题目内容

8.如图,在四棱锥P-ABCD中,已知底面ABCD是矩形,AB=2,AD=a,PD⊥平面ABCD,若边AB上有且只有一点M,使得PM⊥CM,则实数a=1.

分析 以D为原点,DA为x轴,DC为y轴,DP为z轴,建立空间直角坐标系,利用向量法能求出实数a的取值.

解答 解:以D为原点,DA为x轴,DC为y轴,DP为z轴,
建立空间直角坐标系,
设AM=m,DP=t,
则P(0,0,t),M(a,m,0),C(0,2,0),
∴$\overrightarrow{PM}$=(a,m,-t),$\overrightarrow{CM}$=(a,m-2,0),
∵PM⊥CM,
∴$\overrightarrow{PM}$•$\overrightarrow{CM}$=a2+m2-2m=0,
∴a2=-m2+2m=-(m-1)2+1≤1,
∴m=1,a=1边AB上有且只有一点M,使得PM⊥CM,
故答案为:1.

点评 本题考查实数的取值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网