题目内容

3.已知四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$,AB=1,M是PB的中点.N是AB的中点.
(1)证明:面PAD∥面MNC;
(2)证明:面PAD⊥面PCD;
(3)求PC与面PAD所成的角的正切;
(4)求二面角M-AC-B的正切.

分析 (1)推导出MN∥PA,CN∥AD,由此能证明面PAD∥面MNC.
(2)推导出CD⊥PD.,从而CD⊥面PAD.且CD⊥面PCD,由此能证明面PAD⊥面PCD.
(3)以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出PC与面PAD所成的角的正切.
(4)求出平面MAC的法向量和平面ABC的法向量,利用向量法能求出二面角M-AC-B的正切.

解答 证明:(1)∵四棱锥P-ABCD的底面为直角梯形,AB∥DC,∠DAB=90°,
PA⊥底面ABCD,且PA=AD=DC=$\frac{1}{2}$,AB=1,M是PB的中点.N是AB的中点,
∴MN∥PA,CN∥AD,
∵PA∩AD=A,MN∩NC=N,PA,AD?平面PAD,MN,NC?平面MNC,
∴面PAD∥面MNC.
(2)∵PA⊥面ABCD,CD⊥AD,
∴由三垂线定理得:CD⊥PD. 
因而,CD与面PAD内两条相交直线AD,PD都垂直,
∴CD⊥面PAD.
又CD⊥面PCD,
∴面PAD⊥面PCD.
解:(3)以A为原点,AD为x轴,AB为y轴,AP为z轴,建立空间直角坐标系,
则P(0,0,$\frac{1}{2}$),C($\frac{1}{2},\frac{1}{2}$,0),$\overrightarrow{PC}$=($\frac{1}{2},\frac{1}{2},-\frac{1}{2}$),
平面PAD的法向量$\overrightarrow{n}$=(0,1,0),
设PC与面PAD所成的角为θ,
则sinθ=$\frac{|\overrightarrow{PC}•\overrightarrow{n}|}{|\overrightarrow{PC}|•|\overrightarrow{n}|}$=$\frac{\frac{1}{2}}{\sqrt{\frac{3}{4}}}$=$\frac{\sqrt{3}}{3}$,cosθ=$\sqrt{1-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{6}}{3}$,
∴PC与面PAD所成的角的正切tanθ=$\frac{sinθ}{cosθ}$=$\frac{\frac{\sqrt{3}}{3}}{\frac{\sqrt{6}}{3}}$=$\frac{\sqrt{2}}{2}$.
(4)B(0,1,0),M(0,$\frac{1}{2},\frac{1}{4}$),$\overrightarrow{AM}$(0,$\frac{1}{2},\frac{1}{4}$),$\overrightarrow{AC}$=($\frac{1}{2},\frac{1}{2},0$),
设平面MAC的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AM}=\frac{1}{2}b+\frac{1}{4}c=0}\\{\overrightarrow{m}•\overrightarrow{AC}=\frac{1}{2}a+\frac{1}{2}b=0}\end{array}\right.$,取a=1,得$\overrightarrow{m}$=(1,-1,2),
平面ABC的法向量$\overrightarrow{p}$=(0,0,1),
设二面角M-AC-B的平面角为α,
则cosα=$\frac{|\overrightarrow{m}•\overrightarrow{p}|}{|\overrightarrow{m}|•|\overrightarrow{p}|}$=$\frac{2}{\sqrt{6}}$=$\frac{\sqrt{6}}{3}$,sin$α=\sqrt{1-(\frac{\sqrt{6}}{3})^{2}}$=$\frac{\sqrt{3}}{3}$,
∴二面角M-AC-B的正切tanα=$\frac{sinα}{cosα}=\frac{\frac{\sqrt{3}}{3}}{\frac{\sqrt{6}}{3}}$=$\frac{\sqrt{2}}{2}$.

点评 本题考查面面平行、面面垂直的证明,考查线面角、面面角的正切值的求法,是中档题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网