题目内容
计算
[
+
+
+…+
]=______.
| lim |
| n→∞ |
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| 3×5 |
| 1 |
| n(n+2) |
∵2[
+
+…+
]
=1-
+
-
+…+
-
=1+
-
-
=
-
∴
+
+…+
=
-
∴
[
+
+…+
]=
[
-
]=
故答案为:
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
=1-
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=1+
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 2 |
| 2n+3 |
| (n+1)(n+2) |
∴
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
∴
| lim |
| n→∞ |
| 1 |
| 1×3 |
| 1 |
| 2×4 |
| 1 |
| n(n+2) |
| lim |
| n→∞ |
| 3 |
| 4 |
| 2n+3 |
| 2(n+1)(n+2) |
| 3 |
| 4 |
故答案为:
| 3 |
| 4 |
练习册系列答案
相关题目
计算
[1+
+(
)2+(
)3+…+(
)n-1]的结果是( )
| lim |
| n→∞ |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
A、
| ||
| B、3 | ||
C、
| ||
| D、2 |