题目内容
(1)已知平面向量
=(1,x),
=(2x+3,-x),x∈R.若
⊥
,求出x的值;
(2)已知|
|=3,|
|=2,
,
所成角为60°,求|2
+
|的值.
| a |
| b |
| a |
| b |
(2)已知|
| a |
| b |
| a |
| b |
| a |
| b |
(1)若
⊥
,则
•
=2x+3-x2=0,∴x=3,或 x=-1.
(2)已知|
|=3,|
|=2,
,
所成角为60°,∴
•
=3×2cos60°=3.
|2
+
|=
=
=
=
=2
.
| a |
| b |
| a |
| b |
(2)已知|
| a |
| b |
| a |
| b |
| a |
| b |
|2
| a |
| b |
(2
|
4
|
| 36 +12+4 |
| 52 |
| 13 |
练习册系列答案
相关题目
已知平面向量
,
的夹角为120°,且
•
=-1,则|
-
|的最小值为( )
| a |
| b |
| a |
| b |
| a |
| b |
A、
| ||
B、
| ||
C、
| ||
| D、1 |