题目内容

已知平面向量
a
b
的夹角为120°,且
a
b
=-1,则|
a
-
b
|的最小值为(  )
A、
6
B、
3
C、
2
D、1
分析:根据平面向量的数量积的应用,利用基本不等式即可求解.
解答:解:∵平面向量
a
b
的夹角为120°,
a
b
=|
a
|•|
b
|cos120°=-
1
2
=|
a
|•|
b
|=-1,
∴|
a
|•|
b
|=2,
则|
a
-
b
|=
(
a
-
b
)2
=
|
a
2
|-2
a
b
+|
b
|2
=
|
a
2
|+|
b
2
|+2
2|
a
|•|
b
|+2
=
4+2
=
6

当且仅当|
a
|=|
b
|=
2
时取等号,
故|
a
-
b
|的最小值为
6

故选:A.
点评:本题主要考查平面向量数量积的应用以及基本不等式的应用,利用数量积的定义求出向量长度之间的关系是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网