题目内容
(文科)tan21°+tan24°+tan21°tan24°=( )
| A、1 | ||
| B、-1 | ||
C、
| ||
D、-
|
考点:两角和与差的正切函数
专题:三角函数的求值
分析:由两角和的正切公式变形可得tan21°+tan24°=tan(21°+24°)(1-tan21°tan24°),代入要求的式子化简可得.
解答:
解:∵tan(21°+24°)=
,
∴tan21°+tan24°+tan21°tan24°
=tan(21°+24°)(1-tan21°tan24°)+tan21°tan24°
=tan45°(1-tan21°tan24°)+tan21°tan24°
=1-tan21°tan24°+tan21°tan24°=1
故选:A
| tan21°+tan24° |
| 1-tan21°tan24° |
∴tan21°+tan24°+tan21°tan24°
=tan(21°+24°)(1-tan21°tan24°)+tan21°tan24°
=tan45°(1-tan21°tan24°)+tan21°tan24°
=1-tan21°tan24°+tan21°tan24°=1
故选:A
点评:本题考查两角和的正切公式,正确变形是解决问题的关键,属基础题.
练习册系列答案
相关题目
在数列{an}中,a1=5,an+1=(1+
)an,则( )
| 1 |
| n |
| A、an=3n+2 |
| B、an=6n-1 |
| C、an=5n |
| D、an=4n+1 |
计算2sin15°•cos30°+sin15°等于( )
A、
| ||||
B、-
| ||||
C、
| ||||
D、-
|
根据下列情况,判断三角形解的情况,其中正确的是( )
| A、a=8,b=16,A=30°,有两解 |
| B、b=18,c=20,B=60°,有一解 |
| C、a=5,c=2,A=90°,无解 |
| D、a=30,b=25,A=150°,有一解 |
已知命题p:?x∈R,2x<3x;命题q:?x∈R,2x≥1+x2,则命题p,q的真假是( )
| A、p真q真 | B、p真q假 |
| C、p假q真 | D、p假q假 |
在△ABC中,内角A、B、C的对边分别是a、b、c,若b2-c2=
ac,sinA=2
sinC,则B=( )
| 3 |
| 3 |
| A、30° | B、60° |
| C、120° | D、150° |
由①y=2x+5是一次函数;②y=2x+5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )
| A、②①③ | B、③①② |
| C、①②③ | D、②③① |