题目内容

已知a>2,求证:log(a-1)a>loga(a+1)
证明(法一):∵log(a-1)a-loga(a+1)=
1
loga(a-1)
-loga(a+1)

=
1-(loga(a-1))•(loga(a+1))
loga(a-1)

因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,loga(a-1)•loga(a+1)[
loga(a-1)+loga(a+1)
2
]
2

=
[loga(a2-1)]2
4
[logaa2]2
4
=1

所以,log(a-1)a-loga(a+1)>0,命题得证.
证明2:因为a>2,所以,loga(a-1)>0,loga(a+1)>0,
所以,
log(a-1)a
loga(a+1)
=
1
loga(a-1)
loga(a-1)
=
1
(loga(a-1))•(loga(a+1))

由法1可知:loga(a-1)•loga(a+1)[
loga(a-1)+loga(a+1)
2
]
2

=
[loga(a2-1)]2
4
[logaa2]2
4
=1

1
loga(a-1)•loga(a+1)
>1.
故命题得证
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网