题目内容

不等式
3x-1
2-x
≥1
的解集是(  )
A、{x|
3
4
≤x≤2}
B、{x|
3
4
≤x<2}
C、{x|x>2或x≤
3
4
}
D、{x|x≥
3
4
}
分析:把原不等式的右边移项到左边,通分计算后,然后转化为两个一元一次不等式组,求出不等式组的解集即为原不等式的解集.
解答:解:不等式
3x-1
2-x
≥1

移项得:
3x-1
2-x
-1≥0
,即
x-
3
4
x-2
≤0,
可化为:
x-
3
4
≥0
x-2<0
x-
3
4
≤0
x-2>0

解得:
3
4
≤x<2,
则原不等式的解集为:
3
4
≤x<2
故选B.
点评:此题考查了其他不等式的解法,考查了转化及分类讨论的数学思想,是高考中常考的题型.学生进行不等式变形,在不等式两边同时除以-1时,注意不等号方向要改变.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网