题目内容
已知函数
,其中![]()
(1)若曲线![]()
在点
处的切线方程为y=3x+1,求函数
的解析式;
(2)讨论函数
的单调性;[来
解:(1)
,由导数的几何
意义得![]()
(2)=3,于是a=-8,
由切点P(2,f(2))在直线y=3x+1上可得-2+b=7,解得b=9
所以函数f(x)的解析式为![]()
(2)
,当a≤0时,
显然
>0(x≠0),这时f(x)在(-∞,0),(0,+∞)内是增函数;
当a>0时,令
=0,解得x=
,[来源:Z.xx.k.Com]
当x变化时,
,
的变化情况如下表:[来源:学_科_网]x (-∞,-
)- ![]()
(-
,
0)(0,
)![]()
(
,+∞)![]()
+ 0 - - 0 + ![]()
![]()
极大值 ![]()
![]()
极小值 ![]()
所以
在(-∞,-
),(
,+∞)内是增函数,在(-
,0),(0, ![]()
解析
练习册系列答案
相关题目
已知f'(0)=2,则![]()
=( )
| A.4 | B.-8 | C.0 | D.8 |
sin570°的值是 ( )
| A. | B.- | C. | D.- |
=" " ( )
| A.—6 | B.0 | C.6 | D.3 |