题目内容

如图,A,B,C,D四个区域,现在有4种不同的颜色,给A,B,C,D四个区域涂色,要求每个区域只涂一色且相邻区域不涂同一色,则不同的涂法有
 
种.
考点:计数原理的应用
专题:排列组合
分析:每个区域只涂一种颜色,相邻区域颜色不相同,然后分类研究,A、C不同色;A、C同色两大类.
解答: 解:分两种情况:
(1)A、C不同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的2中颜色中任意取一色):有4×3×2×2=48种;
(2)A、C同色(注意:B、D可同色、也可不同色,D只要不与A、C同色,所以D可以从剩余的3中颜色中任意取一色):有4×3×1×3=36种.
共有84种
故答案为:84
点评:本题主要考查了分类计数原理,如何分类时关键.分类要全要细,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网