题目内容
已知数列{an}满足an+1=3an+3n,且a1=1,求an.
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:由已知利用待定系数法构造等比数列,然后由等比数列的通项公式得答案.
解答:
解:由an+1=3an+3n,得
an+1+x(n+1)+y=3(an+xn+y),
即an+1=3an+3xn+3y-x(n+1)-y=3an+2xn+2y-x.
类比an+1=3an+3n,
只需2xn+2y-x=3n
2x=3,2y-x=0,
x=
,y=
.
故an+1+
(n+1)+
=3(an+
n+
).
数列{an+
n+
}是首项为1+
+
=
,公比为3的等比数列.
故an+
n+
=
•3n-1.
an=
•3n-1-
n-
.
an+1+x(n+1)+y=3(an+xn+y),
即an+1=3an+3xn+3y-x(n+1)-y=3an+2xn+2y-x.
类比an+1=3an+3n,
只需2xn+2y-x=3n
2x=3,2y-x=0,
x=
| 3 |
| 2 |
| 3 |
| 4 |
故an+1+
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
数列{an+
| 3 |
| 2 |
| 3 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
| 13 |
| 4 |
故an+
| 3 |
| 2 |
| 3 |
| 4 |
| 13 |
| 4 |
an=
| 13 |
| 4 |
| 3 |
| 2 |
| 3 |
| 4 |
点评:本题考查了数列递推式,考查了利用待定系数法构造等比数列,是中档题.
练习册系列答案
相关题目