题目内容
如图,在四棱锥中,,且,,点在棱上,且.
(1)求证:平面平面;
(2)求证:平面.
如图,在平面直角坐标系xOy中,已知椭圆C: (a>b>0)的离心率为,点(2,1)在椭圆C上.
(1)求椭圆C的方程;
(2)设直线l与圆O:x2+y2=2相切,与椭圆C相交于P,Q两点.
①若直线l过椭圆C的右焦点F,求△OPQ的面积;
②求证: OP⊥OQ.
在五棱锥P-ABCDE中,PA=AB=AE=2a,PB=PE=2a,BC=DE=a,∠EAB=∠ABC=∠DEA=90°.
(1)求证:PA⊥平面ABCDE;
(2)求二面角A-PD-E的正弦值.
命题“所有能被2整除的整数都是偶数”的否定是( )
A.所有不能被2整除的整数都是偶数
B.所有能被2整除的整数都不是偶数
C.存在一个不能被2整除的整数是偶数
D.存在一个能被2整除的整数不是偶数
如图,已知圆上是弧=弧,过点的圆的切线与的延长线交于点.
(1)求证:;
(2)求证:.
若函数(且)的值域是,则实数的取值范围是________.
在一段时间内有2000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如下面的频率分布直方图所示.若该处高速公路规定正常行驶速度为~,试估计2000辆车中在这段时间内以正常速度通过该处的汽车约有 辆.
不等式的解集为 .
如图,已知椭圆的左、右焦点为为椭圆上一点,为椭圆上顶点,在上,.
(1)求当离心率时的椭圆方程;
(2)求满足题设要求的椭圆离心率的取值范围;
(3)当椭圆离心率最小时,若过的直线与椭圆交于(不同于点)两点,试问:是否为定值?并给出证明.