题目内容
若a>0使不等式|x-4|+|x-3|<a在R上的解集不是空集,则a的取值范围是
A. (0,1) B. (0,1] C. (1,+∞) D. [1,+∞)
C
已知二次函数.
(1)若a>b>c, 且f(1)=0,证明f(x)的图象与x轴有2个交点;
(2)在(1)的条件下,是否存在m∈R,使池f(m)=- a成立时,f(m+3)为正数,若存在,证明你的结论,若不存在,说明理由;
(3)若 对,方程有2个不等实根,.
(本题满分14分)已知二次函数.
(2)若 对,方程有2个不等实根,;
(3)在(1)的条件下,是否存在m∈R,使f(m)=- a成立时,f(m+3)为正数,若
存在,证明你的结论,若不存在,说明理由.
已知二次函数f(x)=ax2+bx+c。
(1)若a>b>c,且f(1)=0,证明f(x)的图象与x轴有两个交点;
(2)在(1)的条件下,是否存在mR,使得当f(m)=-a成立时,f(m+3)为正数,证明你的结论;若不存在,说明理由;
(3)若对x1,x2R,且x1<x2,f(x1)≠f(x2),方程f(x)=[f(x1)+f(x2)]有两个不等的实根,证明必有一个实根属于(x1,x2);
已知二次函数f(x)=ax2+bx+c(a≠0).
(1)若a>b>c,且f(1)=0,是否存在m∈R,使得f(m)=-a成立时,f(m+3)为正数?若存在,证明你的结论;若不存在,说明理由.
(2)若对x1,x2∈R,且x1<x2,f(x1)≠f(x2),方程f(x)=[f(x1)+f(x2)]有2个不等实根,证明必有一个根属于(x1,x2).
(3)若f(0)=0,是否存在b的值使{x|f(x)=x}={x|f(f(x))=x}成立?若存在,求出b的取值范围;若不存在,说明理由.