题目内容
在△ABC中,角A,B,C的对边分别为a,b,c.已知2cos(B-C)+1=4cosBcosC.
(Ⅰ)求A;
(Ⅱ)若a=2
,△ABC的面积为2
,求b+c.
(Ⅰ)
;(Ⅱ)6.
解析试题分析:(Ⅰ) 对于2cos(B-C)+1=4cosBcosC通过三角恒等变换,再结合角的范围即可得;(Ⅱ)利用余弦定理、面积公式可求.
试题解析:(Ⅰ) 由2cos(B-C)+1=4cosBcosC,得
2(cosBcosC+sinBsinC)+1=4cosBcosC,
即2(cosBcosC-sinBsinC)=1,亦即2cos(B+C)=1,
∴cos(B+C)=
. ∵0<B+C<π,∴B+C=
.
∵A+B+C=π, ∴A=
. 6分
(Ⅱ)由(Ⅰ),得A=
.
由S△ABC=2
,得
bcsin
=2
,∴bc=8. ①
由余弦定理a2=b2+c2-2bccosA,得
(2
)2=b2+c2-2bccos
,即b2+c2+bc=28,
∴(b+c)2-bc=28. ②
将①代入②,得(b+c)2-8=28,
∴b+c=6. 12分
考点:解三角形,正、余弦定理,面积公式
练习册系列答案
相关题目