题目内容
3..在△ABC中,角A,B,C的对边分别为a,b,c且bcosC+ccosB=3acosB(Ⅰ)求cosB的值;
(Ⅱ)若ac=6,且b=2$\sqrt{2}$,求a和c的值.
分析 (Ⅰ)由于bcosC+ccosB=3acosB,利用正弦定理代换得出sinBbcosC+sinCcosB=3sinAcosB,整理sin(B+C)=3sinAcosB,易求cosB.
(Ⅱ)由已知及余弦定理可求a2+c2=12,联立ac=6,即可解得a,c的值.
解答 解:(Ⅰ)∵由于bcosC+ccosB=3acosB,
∴利用正弦定理代换得出sinBcosC+sinCcosB=3sinAcosB,
∴整理sin(B+C)=3sinAcosB,即sinA=3sinAcosB,
∵由于sinA≠0,
∴cosB=$\frac{1}{3}$.
(Ⅱ)∵ac=6,cosB=$\frac{1}{3}$,b=2$\sqrt{2}$,
∴由余弦定理:b2=a2+c2-2accosB,可得:8=a2+c2-4,化为a2+c2=12.
联立$\left\{\begin{array}{l}{ac=6}\\{{a}^{2}+{c}^{2}=12}\end{array}\right.$,解得a=c=$\sqrt{6}$.
点评 本题主要考查了正弦定理、余弦定理在解三角形中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
14.在棱长为a的正方体ABCD-A1B1C1D1内有一个内切球O,过正方体中两条互为异面直线的AA1,BC的中点P、Q作直线,该直线被球面截在球内的线段的长为( )
| A. | $\frac{\sqrt{2}}{2}$a | B. | $\frac{1}{2}$a | C. | $\frac{1}{4}$a | D. | ($\sqrt{2}$-1)a |
18.若将函数y=sin2x的图象向右平移$\frac{π}{12}$个单位长度,则平移后的图象的对称轴方程为( )
| A. | x=$\frac{kπ}{2}$$-\frac{7π}{12}$(k∈Z) | B. | x=$\frac{kπ}{2}$$+\frac{7π}{12}$(k∈Z) | C. | x=$\frac{kπ}{2}$$-\frac{π}{3}$(k∈Z) | D. | x=$\frac{kπ}{2}$$+\frac{π}{3}$(k∈Z) |
8.已知函数f(x)满足:f(x)=f(x+2),且当x∈[0,2]时,f(x)=(x-1)2,则f($\frac{7}{2}$)等于( )
| A. | 0 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
15.已知 $cos({\frac{π}{2}-α})=\frac{2}{3}$,则sin(π+α)=( )
| A. | $-\frac{{\sqrt{5}}}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{{\sqrt{5}}}{3}$ |
13.我市在对高三学生的综合素质评价中,将其测评结果分为“A、B、C”三个等级,其中A表示“优秀”,B表示“良好”,C表示“合格”.
(1)某校高三年级有男生1000人,女生700人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高三学生中抽取了85名学生的综合素质评价结果,其各个等级的频数统计如表:
根据表中统计的数据填写下面2×2列联表,并判断是否有95%的把握认为“综合素质评价测评结果为优秀与性别有关”?
(2)以(1)中抽取的85名学生的综合素质评价等级为“合格”的学生中按分层抽样随机抽取6人.再从这6人中任选2人去参加“提高班”培训,求所选6人中恰有2人为男生的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
(1)某校高三年级有男生1000人,女生700人,为了解性别对该综合素质评价结果的影响,采用分层抽样的方法从高三学生中抽取了85名学生的综合素质评价结果,其各个等级的频数统计如表:
| 等级 | 优秀 | 良好 | 合格 |
| 男生(人) | 16 | x | 8 |
| 女生(人) | 18 | 13 | y |
| 男生 | 女生 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
临界值表:
| P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
| k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |