题目内容
设数列{bn}的前n项和为Sn,且bn=2-2Sn;数列{an}为等差数列,且a5=14,a7=20.(1)求数列{bn}的通项公式;
(2)若cn=an•bn,n=1,2,3,…,Tn为数列{cn}的前n项和.求证:Tn<
| 7 | 2 |
分析:(1)由题设条件知b1=
.b2=
,bn=2-2Sn,bn-bn-1=-2(Sn-Sn-1)=-2bn.
=
,由此可求出数列{bn}的通项公式.
(2)数列{an}为等差数列,公差d=
(a7-a5)=3,可得an=3n-1.从而cn=an•bn=2(3n-1)•
,由此能证明数列{cn}的前n项和Tn<
.
| 2 |
| 3 |
| 2 |
| 9 |
| bn |
| bn-1 |
| 1 |
| 3 |
(2)数列{an}为等差数列,公差d=
| 1 |
| 2 |
| 1 |
| 3n |
| 7 |
| 2 |
解答:解:(1)由bn=2-2Sn,令n=1,则b1=2-2S1,又S1=b1,
所以b1=
.b2=2-2(b1+b2),则b2=
.
当n≥2时,由bn=2-2Sn,可得bn-bn-1=-2(Sn-Sn-1)=-2bn.即
=
.
所以{bn}是以b1=
为首项,
为公比的等比数列,于是bn=2•
.
(2)数列{an}为等差数列,公差d=
(a7-a5)=3,可得an=3n-1.
从而cn=an•bn=2(3n-1)•
∴Tn=2[2•
+5•
+8•
+…+(3n-1)•
]=
-
•
-
<
.
所以b1=
| 2 |
| 3 |
| 2 |
| 9 |
当n≥2时,由bn=2-2Sn,可得bn-bn-1=-2(Sn-Sn-1)=-2bn.即
| bn |
| bn-1 |
| 1 |
| 3 |
所以{bn}是以b1=
| 2 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3n |
(2)数列{an}为等差数列,公差d=
| 1 |
| 2 |
从而cn=an•bn=2(3n-1)•
| 1 |
| 3n |
∴Tn=2[2•
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 33 |
| 1 |
| 3n |
| 7 |
| 2 |
| 7 |
| 2 |
| 1 |
| 3n |
| n |
| 3n-1 |
| 7 |
| 2 |
点评:本题考查数列的性质和应用,解题时要认真审题,仔细解答,注意公式的灵活运用.
练习册系列答案
相关题目