题目内容


等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.

第一列

第二列

第三列

第一行

3

2

10

第二行

6

4

14

第三行

9

8

18

(1)求数列{an}的通项公式;

(2)若数列{bn}满足:bn=an+(-1)nln an,求数列{bn}的前2n项和S2n.


解:(1)当a1=3时,不合题意;

当a1=2时,当且仅当a2=6,a3=18时,符合题意;

当a1=10时,不合题意.

因此a1=2,a2=6,a3=18,所以公比q=3.

故an=2·3n-1.

(2)因为bn=an+(-1)nln an,

=2×3n-1+(-1)nln(2×3n-1)

=2×3n-1+(-1)n[ln 2+(n-1)ln 3]

=2×3n-1+(-1)n(ln 2-ln 3)+(-1)nn ln 3.

所以S2n=b1+b2+…+b2n=2(1+3+…+32n-1)+[-1+1-1+…+(-1)2n](ln 2-ln 3)+[-1+2-3+…+(-1)2n2n]ln 3=2×+nln 3=32n+nln 3-1.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网