题目内容

20.在锐角△ABC中,AC=6,B=2A,则边BC的取值范围是$(2\sqrt{3},3\sqrt{2})$..

分析 根据三角形为锐角三角形,解不等式得$\frac{π}{6}$<A<$\frac{π}{4}$.再由正弦定理,得BC=$\frac{3}{cosA}$,结合余弦函数的单调性加以计算,即可得到BC的取值范围.

解答 解:∵锐角△ABC中,B=2A,
∴$\left\{\begin{array}{l}{\stackrel{0<A<\frac{π}{2}}{0<2A<\frac{π}{2}}}\\{0<π-3A<\frac{π}{2}}\end{array}\right.$,解之得$\frac{π}{6}$<A<$\frac{π}{4}$,
∵AC=1,且 $\frac{AC}{sinB}$=$\frac{BC}{sinA}$,
∴BC=$\frac{ACsinA}{sinB}$=6•$\frac{sinA}{sin2A}$=$\frac{3}{cosA}$,
∵$\frac{π}{6}$<A<$\frac{π}{4}$,得$\frac{\sqrt{2}}{2}$<cosA<$\frac{\sqrt{3}}{2}$,
∴2$\sqrt{3}<$$\frac{3}{cosA}$<3$\sqrt{2}$,得BC=$\frac{3}{cosA}$∈(2$\sqrt{3}$,3$\sqrt{2}$),
故答案为:$(2\sqrt{3},3\sqrt{2})$.

点评 本题给出锐角三角形的一个角是另一角的二倍,求边BC的取值范围,着重考查了三角形内角和定理和利用正、余弦定理解三角形等知识,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网