题目内容
16.设函数f(x)在x0处可导,则$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{t}$=( )| A. | -2f′(x0) | B. | f′(x0) | C. | 4f′(x0) | D. | $\frac{1}{4}$f′(x0) |
分析 根据导数定义:$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{t}$=4$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{4t}$=4f'(x0).
解答 解:根据函数f(x)在x=x0处导数的定义,
$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{t}$
=4•$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{4t}$
=4•$\underset{lim}{t→0}$$\frac{f({x}_{0}+t)-f({x}_{0}-3t)}{({x}_{0}+t)-({x}_{0}-3t)}$
=4f'(x0),
故选:C.
点评 本题主要考查了函数在某一点处导数的定义,合理进行恒等变形是解决本题的关键,属于基础题.
练习册系列答案
相关题目
4.如图是成品加工流程图,从图中可以看出,即使是一件不合格产品,也必须经过多少道工序( )

| A. | 6 | B. | 5或7 | C. | 5 | D. | 5或6或7 |
8.函数y=$\frac{8}{x-1}$+1的单调递减区间是( )
| A. | (-∞,1)∪(1,+∞) | B. | (-∞,-1)∪(-1,+∞) | C. | (-∞,1),(1,+∞) | D. | (-∞,-1),(-1,+∞) |