题目内容
3.已知函数f(x)=ax2-|x|+2a-1(a为实常数).(1)当a=0时,求不等式f(log2x)+2≥0的解集;
(2)当a<0时,求函数f(x)的最大值;
(3)当a>0,设f(x)在区间[1,2]的最小值为g(a),求g(a)的表达式.
分析 (1)当a=0时,f(x)=-|x|-1,从而可得|log2x|≤1,从而解得;
(2)当a<0时,f(x)=ax2-|x|+2a-1是偶函数,且在[0,+∞)上是减函数,从而解得.
(3)当a>0,x∈[1,2]时,化简f(x)=ax2-x+2a-1=a(x-$\frac{1}{2a}$)2-$\frac{1}{4a}$+2a-1,从而讨论以确定函数的最小值.
解答 解:(1)当a=0时,f(x)=-|x|-1,
故-|log2x|-1+2≥0,
故|log2x|≤1,
故$\frac{1}{2}$≤x≤2,
故不等式f(log2x)+2≥0的解集为[$\frac{1}{2}$,2];
(2)当a<0时,
f(x)=ax2-|x|+2a-1是偶函数,在[0,+∞)上是减函数,
故fmax(x)=f(0)=2a-1;
(3)当a>0,x∈[1,2]时,
f(x)=ax2-x+2a-1=a(x-$\frac{1}{2a}$)2-$\frac{1}{4a}$+2a-1,
①当$\frac{1}{2a}$≤1,即a≥$\frac{1}{2}$时,
f(x)在[1,2]上是增函数,
故g(a)=fmin(x)=f(1)=3a-2,
②当1<$\frac{1}{2a}$<2,即$\frac{1}{4}$<a<$\frac{1}{2}$时,
g(a)=fmin(x)=f($\frac{1}{2a}$)=-$\frac{1}{4a}$+2a-1,
③当$\frac{1}{2a}$≥2,即0<a≤$\frac{1}{4}$时,
f(x)在[1,2]上是减函数,
故g(a)=fmin(x)=f(2)=6a-3.
故g(a)=$\left\{\begin{array}{l}{6a-3,0<a≤\frac{1}{4}}\\{-\frac{1}{4a}+2a-1,\frac{1}{4}<a<\frac{1}{2}}\\{3a-2,a≥\frac{1}{2}}\end{array}\right.$.
点评 本题考查了对数不等式的解法及分类讨论的思想应用,同时考查了绝对值函数的应用.
| A. | -$\frac{1}{\sqrt{1+{a}^{2}}}$ | B. | $\frac{1}{\sqrt{1+{a}^{2}}}$ | C. | $\frac{a}{\sqrt{1+{a}^{2}}}$ | D. | -$\frac{a}{\sqrt{1+{a}^{2}}}$ |