题目内容

函数f(x)=x+
a
x

(1)判断并证明函数的奇偶性;
(2)若a=2,证明函数在(2,+∞)单调增;
(3)对任意的x∈(1,2),f(x)>3恒成立,求a的范围.
(1)f(x)是奇函数,证明如下:
由题意可得,函数的定义域{x|x≠0}关于原点对称
∵f(-x)=-x-
a
x
=-f(x)
∴f(x)是奇函数;
(2)证明;当a=2时,f(x)=x+
2
x
,∴f(x)=1-
2
x2

当x>2时,f(x)=1-
2
x2
>0恒成立
∴函数在(2,+∞)单调增;
(3)当a≤0时,f(x)=x+
a
x
在x∈(1,2)单调递增
∴1+a<f(x)<2+
a
2

∴1+a≥3
∴a≥2(舍)
当a>0时,f(x)=x+
a
x
在(0,
a
]单调递减,在[
a
,+∞)单调递增
∴2
a
>3
a>
9
4

∴a的范围是(
9
4
,+∞)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网