题目内容

(Ⅰ)已知tanθ=2,求
1-sin2θ
1+cos2θ
的值;
(Ⅱ)化简:sin2αsin2β+cos2αcos2β-
1
2
cos2αcos2β.
分析:(Ⅰ)把所求式子分子中的“1”变形为sin2θ+cos2θ,第二项利用二倍角的正弦函数公式化简,分母利用二倍角的余弦函数公式化简,合并后分子分母同时除以cos2θ,利用同角三角函数间的基本关系化为关于tanθ的关系式,把tanθ的值代入即可求出值;
(Ⅱ)把原式的第一、二项的各因式分别利用二倍角的正弦、余弦函数公式化简,提取
1
4
后,括号里边抵消合并后,再利用乘法分配律把
1
4
乘到括号里边的每一项,并把所得的积相加,抵消合并可得出化简结果.
解答:解:(Ⅰ)∵tanθ=2,
1-sin2θ
1+cos2θ
=
sin2θ+cos2θ-2sinθcosθ
1+2cos2θ-1
(3分)
=
sin2θ+cos2θ-2sinθcosθ
2cos2θ

=
tan2θ+1-2tanθ
2
(7分)
=
4+1-2×2
2
=
1
2
;(8分)

(Ⅱ) sin2αsin2β+cos2αcos2β-
1
2
cos2αcos2β
=
1-cos2α
2
1-cos2β
2
+
1+cos2α
2
1+cos2β
2
-
1
2
cos2αcos2β(13分)
=
1
4
[(1-cos2α)(1-cos2β)+(1+cos2α)(1+cos2β)]-
1
2
cos2αcos2β
=
1
4
[2+2cos2αcos2β]-
1
2
cos2αcos2β
=
1
2
+
1
2
cos2αcos2β-
1
2
cos2αcos2β
=
1
2
.(16分)
点评:此题考查了二倍角的正弦、余弦函数公式,以及同角三角函数间的基本关系,熟练掌握公式及基本关系是解本题的关键,第一小问注意分子中“1”的灵活变换.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网