题目内容
如图,在棱长为a的正方体OABC-O1A1B1C1中,E、F分别是棱AB、BC上的动点,且AE=BF=x,其中0≤x≤a,以O为原点建立空间直角坐标系O-xyz.
![]()
(1)写出点E、F的坐标;
(2)求证:A1F⊥C1E;
(3)若A1、E、F、C1四点共面,求证:![]()
[解析] (1)解:E(a,x,0),F(a-x,a,0).
即(-x,a,-a)=λ1(-a,a,0)+λ2(0,x,-a)
=(-aλ1,aλ1+xλ2,-aλ2),
练习册系列答案
相关题目