题目内容
已知函数,若,则 .
设二次函数满足下列条件:
①当时,的最小值为0,且恒成立;
②当时,恒成立.
(1)求的值;(2)求的解析式;(3)求最大的实数,使得存在实数,只要当时,就有成立.
已知定义在R上的奇函数f(x)有最小正周期2,且当x∈(0,1)时,f(x)=.
(1)求f(1)和f(-1)的值;
(2)求f(x)在[-1,1]上的解析式.
已知两曲线参数方程分别为 和,它们的交点坐标为_________________
已知定义在上的三个函数,,,且在处取得极值.
(Ⅰ)求a的值及函数的单调区间.
(Ⅱ)求证:当时,恒有成立.
已知函数是定义在上的奇函数,且当时,,则不等式的解集是 .
某市2013年发放汽车牌照12万张,其中燃油型汽车牌照10万张,电动型汽车2万张.为了节能减排和控制总量,从2013年开始,每年电动型汽车牌照按50%增长,而燃油型汽车牌照每一年比上一年减少万张,同时规定一旦某年发放的牌照超过15万张,以后每一年发放的电动车的牌照的数量维持在这一年的水平不变.
(1)记2013年为第一年,每年发放的燃油型汽车牌照数构成数列,每年发放的电动型汽车牌照数为构成数列,完成下列表格,并写出这两个数列的通项公式;
(2)从2013年算起,求二十年发放的汽车牌照总量.
3
已知a,b都是正数,求证:.
已知f(x)是定义在R上的奇函数,当
,若直线与函数的图象恰有3个不同的公共点,则实数的取值范围为 .