题目内容
5.在平面直角坐标系xOy中,已知△ABC的顶点A(0,-2)和C(0,2),顶点B在椭圆$\frac{y^2}{12}$+$\frac{x^2}{8}$=1上,则$\frac{sinA+sinC}{sinB}$的值是$\sqrt{6}$.分析 由已知利用椭圆的定义可得|AB|+|BC|=2a,AC=2c.在△ABC中,由正弦定理可得:$\frac{sinA+sinC}{sinB}$=$\frac{|BC|+|AB|}{|AC|}$,即可得出.
解答 解:如图所示,![]()
由椭圆$\frac{y^2}{12}$+$\frac{x^2}{8}$=1,可得:a=$2\sqrt{3}$,b=2$\sqrt{2}$,c=$\sqrt{{a}^{2}-{b}^{2}}$=2.
∴△ABC的顶点A(0,-2)和C(0,2),为椭圆的两个焦点.
∴|AB|+|BC|=2a=4$\sqrt{6}$,AC=2c=4.
在△ABC中,由正弦定理可得:$\frac{sinA+sinC}{sinB}$=$\frac{|BC|+|AB|}{|AC|}$=$\frac{2a}{2c}$=$\frac{4\sqrt{6}}{4}$=$\sqrt{6}$.
故答案为:$\sqrt{6}$.
点评 本题考查了椭圆的定义及其标准方程、正弦定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
20.函数y=3sin(-x+$\frac{π}{6}$)的相位和初相分别是( )
| A. | -x+$\frac{π}{6}$,$\frac{π}{6}$ | B. | x+$\frac{5π}{6}$,$\frac{5π}{6}$ | C. | x-$\frac{π}{6}$,-$\frac{π}{6}$ | D. | x+$\frac{5π}{6}$,$\frac{π}{6}$ |
15.给出四个命题:
①若x2-3x+2=0,则x=1或x=2;
②若x=y=0,则x2+y2=0;
③已知x,y∈N,若x+y是奇数,则x,y中一个是奇数,一个偶数;
④若x1,x2是方程x2-2$\sqrt{3}$x+2=0的两根,则x1,x2可以是一椭圆与一双曲线的离心率.
那么( )
①若x2-3x+2=0,则x=1或x=2;
②若x=y=0,则x2+y2=0;
③已知x,y∈N,若x+y是奇数,则x,y中一个是奇数,一个偶数;
④若x1,x2是方程x2-2$\sqrt{3}$x+2=0的两根,则x1,x2可以是一椭圆与一双曲线的离心率.
那么( )
| A. | ①的逆命题为真 | B. | ②的否命题为假 | C. | ③的逆命题为假 | D. | ④的逆否命题为假 |