题目内容

4.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)在区间[-ω,ω]上单调递增,且函数f(x)的图象关于直线x=ω对称,则ω的值为(  )
A.$\frac{\sqrt{π}}{3}$B.$\frac{\sqrt{π}}{2}$C.$\frac{\sqrt{3π}}{3}$D.$\frac{\sqrt{3π}}{2}$

分析 由两角和的正弦函数公式化简解析式可得f(x)=2sin(ωx+$\frac{π}{6}$),由2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的单调递增区间,结合已知可得:-ω≥$\frac{2kπ-\frac{2π}{3}}{ω}$①,ω≤$\frac{2kπ+\frac{π}{3}}{ω}$②,k∈Z,从而解得k=0,又由ωx+$\frac{π}{6}$=kπ+$\frac{π}{2}$,可解得函数f(x)的对称轴为:x=$\frac{kπ+\frac{π}{3}}{ω}$,k∈Z,结合已知可得:ω2=$\frac{π}{3}$,从而可求ω的值.

解答 解:∵f(x)=sinωx+cosωx=2sin(ωx+$\frac{π}{6}$),
∵函数f(x)在区间(-ω,ω)内单调递增,ω>0
∴2kπ-$\frac{π}{2}$≤ωx+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z可解得函数f(x)的单调递增区间为:[$\frac{2kπ-\frac{2π}{3}}{ω}$,$\frac{2kπ+\frac{π}{3}}{ω}$],k∈Z,
∴可得:-ω≥$\frac{2kπ-\frac{2π}{3}}{ω}$①,ω≤$\frac{2kπ+\frac{π}{3}}{ω}$②,k∈Z,
∴解得:0<ω2≤$\frac{π}{3}$+2kπ且0<ω2≤-2kπ+$\frac{2π}{3}$,k∈Z,
解得:-$\frac{1}{6}$<k<$\frac{1}{3}$,k∈Z,
∴可解得:k=0,
又∵由ωx+$\frac{π}{6}$=kπ+$\frac{π}{2}$,可解得函数f(x)的对称轴为:x=$\frac{kπ+\frac{π}{3}}{ω}$,k∈Z,
∴由函数y=f(x)的图象关于直线x=ω对称,可得:ω2=$\frac{π}{3}$,可解得:ω=$\frac{\sqrt{3π}}{3}$.
故选:C.

点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,考查了正弦函数的图象和性质,正确确定k的值是解题的关键,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网