题目内容
19.设全集U=R,集合A={x|x2<1},B={x|x2-2x>0},则A∩(∁RB)=[0,1).分析 求出集合A,B,利用集合的基本运算即可得到结论.
解答 解:集合A={x|x2<1}=(-1,1),B={x|x2-2x>0}=(-∞,0)∪(2,+∞),
即∁RB=[0,2],
故A∩(∁RB)=[0,1)
故答案为:[0,1).
点评 本题主要考查集合的基本运算,求出集合A,B的元素是解决本题的关键,比较基础.
练习册系列答案
相关题目
9.A,B,C三个集合,若A?B∪C,则有( )成立.
| A. | 若x$\overline{∈}$B∪C,则x$\overline{∈}$A | B. | 若x∈A,则x∈B∩C | C. | 若x∈A,则x∈C | D. | 若x∈A,则x∈B |