题目内容

7.已知函数$g(x)=\frac{{{4^x}-a}}{2^x}$是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a+b的值.
(2)若对任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求实数k的取值范围.
(3)设$h(x)=f(x)+\frac{1}{2}x$,若存在x∈(-∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.

分析 (1)由条件利用函数的奇偶性的性质求得a、b的值,可得a+b的值.
(2)由条件利用函数的单调性求得3t2-2t>k,t∈[0,+∞)恒成立,求得3t2-2t的最小值,可得k的范围.
(3)由题意可得存在x∈(-∞,1],使不等式g(x)>lg(10a+10)成立,求得g(x)的最大值,可得a的范围.

解答 解:(1)由g(0)=0得a=1,则$g(x)=\frac{{{4^x}-1}}{2^x}$,经检验g(x)是奇函数.
由f(-1)=f(1)得$b=-\frac{1}{2}$,则$f(x)=lg({10^x}+1)-\frac{1}{2}x$,经检验f(x)是偶函数,
∴$a+b=\frac{1}{2}$.
(2)∵$g(x)=\frac{{{4^x}-1}}{2^x}={2^x}-\frac{1}{2^x}$,且g(x)在(-∞,+∞)单调递增,且g(x)为奇函数.
∴由g(t2-2t)+g(2t2-k)>0恒成立,得g(t2-2t)>-g(2t2-k)=g(-2t2+k),
∴t2-2t>-2t2+k,t∈[0,+∞)恒成立,
即3t2-2t>k,t∈[0,+∞)恒成立,
令F(x)=3t2-2t,在[0,+∞)上F(x)的最小值为$F(\frac{1}{3})=-\frac{1}{3}$,∴$k<-\frac{1}{3}$.
(3)h(x)=lg(10x+1),h(lg(10a+9))=lg[10lg(10a+9)+1]=lg(10a+10),
则由已知得,存在x∈(-∞,1],使不等式g(x)>lg(10a+10)成立,
而g(x)在(-∞,1]单增,∴${g_{max}}(x)=g(1)=\frac{3}{2}$,
∴$lg(10a+10)<\frac{3}{2}=lg{10^{\frac{3}{2}}}={lg^{10\sqrt{10}}}$,∴$10a+10<10\sqrt{10}$.
又$a<\sqrt{10}-1$,
∵$\left\{\begin{array}{l}10a+9>0\\ 10a+10>0\end{array}\right.$,∴$a>-\frac{9}{10}$,
∴$-\frac{9}{10}<a<\sqrt{10}-1$.

点评 本题主要考查函数的奇偶性的性质,函数的单调性,函数的恒成立与能成立问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网