题目内容
19.设a、b都是不等于1的正数,则“a>b>1”是“loga3<logb3”的( )条件.| A. | 充要 | B. | 充分非必要 | ||
| C. | 必要非充分 | D. | 既非充分也非必要 |
分析 根据对数函数的性质求解即可,再利用充分必要条件的定义判断即可.
解答 解:a、b都是不等于1的正数,
∵loga3<logb3,
∴$\frac{1}{lga}$<$\frac{1}{lgb}$,即 $\frac{lgb-lga}{lgalgb}$<0,
∴$\left\{\begin{array}{l}{lgb-lga<0}\\{lgalgb>0}\end{array}\right.$或 $\left\{\begin{array}{l}{lgb-lga>0}\\{lgalgb<0}\end{array}\right.$,
求解得出:a>b>1或1>a>b>0或b>1,0<a<1
根据充分必要条件定义得出:
“a>b>1”是“loga3<logb3”的充分条不必要件,
故选:B.
点评 本题综合考查了指数,对数函数的单调性,充分必要条件的定义,属于综合题目,关键是分类讨论.
练习册系列答案
相关题目
10.设$f(x)=\left\{\begin{array}{l}x+4,x≤-2或x≥3\\{x^2}-1,-2<x<3\end{array}\right.$,若函数y=f(x)+k的图象与x轴恰有三个不同交点,则k的取值范围是( )
| A. | (-2,1) | B. | [0,1] | C. | [-2,0) | D. | [-2,1) |
7.某校开展“翻转合作学习法”教学实验,经过一年的实践后,对“翻转班”和“对照班”的全部220名学生的数学学习情况进行测试,按照大于或等于120分为“成绩优秀”,120分以下为“成绩一般”统计,得到如下的2×2列联表.
(Ⅰ)根据上面的列联表判断,能否在犯错误的概率不超过0.001的前提下认为“成绩优秀与翻转合作学习法”有关;
(Ⅱ)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到一名“对照班”学生交流的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$:
| 成绩优秀 | 成绩一般 | 合计 | |
| 对照班 | 20 | 90 | 110 |
| 翻转班 | 40 | 70 | 110 |
| 合计 | 60 | 160 | 220 |
(Ⅱ)为了交流学习方法,从这次测试数学成绩优秀的学生中,用分层抽样方法抽出6名学生,再从这6名学生中抽3名出来交流学习方法,求至少抽到一名“对照班”学生交流的概率.
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$:
| P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
14.执行如图所示的程序框图,若输入n=10,则输出S=( )

| A. | $\frac{4}{9}$ | B. | $\frac{5}{11}$ | C. | $\frac{6}{13}$ | D. | $\frac{36}{55}$ |
4.已知集合S={1,2},设S的真子集有m个,则m=( )
| A. | 4 | B. | 3 | C. | 2 | D. | 1 |
11.已知常数ω>0,f(x)=-1+2$\sqrt{3}$sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为$\frac{π}{4}$,若f(x0)=$\frac{6}{5}$,$\frac{π}{4}$≤x0≤$\frac{π}{2}$,则cos2x0=( )
| A. | $\frac{3+2\sqrt{3}}{10}$ | B. | $\frac{3-2\sqrt{2}}{10}$ | C. | $\frac{3+4\sqrt{3}}{10}$ | D. | $\frac{3-4\sqrt{3}}{10}$ |