题目内容

15.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若满足a2=(b-c)2+(2-$\sqrt{3}$)bc
(Ⅰ)求角A的大小;
(Ⅱ)若$\frac{1-cos2A}{1-cos2B}$=$\frac{a}{b}$,且S△ABC=$\sqrt{3}$,求边长c.

分析 (Ⅰ)利用余弦定理即可求出角A的大小;
(Ⅱ)利用三角函数的恒等变换,结合正弦、余弦定理,即可求出结果.

解答 解:(Ⅰ)△ABC中,a2=(b-c)2+(2-$\sqrt{3}$)bc,
∴b2+c2-a2=$\sqrt{3}$bc,
∴cosA=$\frac{{b}^{2}{+c}^{2}{-a}^{2}}{2bc}$=$\frac{\sqrt{3}bc}{2bc}$=$\frac{\sqrt{3}}{2}$;
又A∈(0,π),∴A=$\frac{π}{6}$;
(Ⅱ)∵$\frac{1-cos2A}{1-cos2B}$=$\frac{a}{b}$,
∴$\frac{{2sin}^{2}A}{{2sin}^{2}B}$=$\frac{a}{b}$,
即$\frac{{a}^{2}}{{b}^{2}}$=$\frac{a}{b}$,
∴$\frac{a}{b}$=1,即a=b;
∴B=A=$\frac{π}{6}$,C=π-(A+B)=$\frac{2π}{3}$;
又S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$a2sin$\frac{2π}{3}$=$\sqrt{3}$,∴a=2;
∴c2=a2+b2-2abcosC=22+22-2×2×2cos$\frac{2π}{3}$=12,
解得边长c=2$\sqrt{3}$.

点评 本题考查了三角恒等变换和正弦、余弦定理的应用问题,也考查了推理与计算能力,是综合性题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网