题目内容

4.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令${b_n}={a_n}•{3^n}$(n∈N*),求数列{bn}的前n项和.

分析 (1)利用等差数列的通项公式即可得出.
(2)利用错位相减法与等比数列的求和公式即可的.

解答 解:(1)设等差数列{an}的公差为d,∵a1=2,a1+a2+a3=12.
∴3×2+3d=12,解得d=2.
∴an=2+2(n-1)=2n.
(2)${b_n}={a_n}•{3^n}$=2n•3n
∴数列{bn}的前n项和Tn=2(3+2×32+3×33+…+n•3n).
3Tn=2[32+2×33+…+(n-1)•3n+n•3n+1],
∴-2Tn=2(3+32+…+3n)-2×n•3n+1=2×$\frac{3({3}^{n}-1)}{3-1}$-2×n•3n+1
化为:Tn=$\frac{(2n-1)•{3}^{n+1}+3}{2}$.

点评 本题考查了等差数列与等比数列的通项公式与求和公式、错位相减法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网