题目内容
数列{an}满足a1=2,an+1=an2+6an+6(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
-
,数列{bn}的前n项和为Tn,求证:-
≤Tn<-
.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| an-6 |
| 1 |
| an2+6an |
| 5 |
| 16 |
| 1 |
| 4 |
考点:数列递推式
专题:等差数列与等比数列
分析:(Ⅰ)由an+1=an2+6an+6得:an+1+3=(an+3)2,从而得到数列{lg(an+3)}是以lg(a1+3)=lg5为首项,以2为公比的等比数列,由此能求出an=52n-1-3.
(Ⅱ)bn=
-
=
-
,从而Tn=-
,由此能证明-
≤Tn<-
.
(Ⅱ)bn=
| 1 |
| an-6 |
| 1 |
| an2+6an |
| 1 |
| an-6 |
| 1 |
| an+1-6 |
| 1 |
| 52n-9 |
| 5 |
| 16 |
| 1 |
| 4 |
解答:
(本小题满分12分)
解:(Ⅰ)由an+1=an2+6an+6得:an+1+3=(an+3)2
两边同时取对数得:lg(an+1+3)=2lg(an+3),
∴数列{lg(an+3)}是以lg(a1+3)=lg5为首项,以2为公比的等比数列,
∴lg(an+3)=lg5•2n-1,
∴an=52n-1-3.
(Ⅱ)∵数列{an}满足a1=2,an+1=an2+6an+6(n∈N*).
∴bn=
-
=
-
,
∴Tn=
-
+
-
+…+
-
=
-
=-
,
∵n≥1,∴2n≥2,∴52n≥25,
∴52n-1-9≥16,
∴0<
≤
,
∴-
≤-
<0,
∴-
≤-
-
<-
,
∴-
≤Tn<-
.
解:(Ⅰ)由an+1=an2+6an+6得:an+1+3=(an+3)2
两边同时取对数得:lg(an+1+3)=2lg(an+3),
∴数列{lg(an+3)}是以lg(a1+3)=lg5为首项,以2为公比的等比数列,
∴lg(an+3)=lg5•2n-1,
∴an=52n-1-3.
(Ⅱ)∵数列{an}满足a1=2,an+1=an2+6an+6(n∈N*).
∴bn=
| 1 |
| an-6 |
| 1 |
| an2+6an |
| 1 |
| an-6 |
| 1 |
| an+1-6 |
∴Tn=
| 1 |
| a1-6 |
| 1 |
| a2-6 |
| 1 |
| a3-6 |
| 1 |
| a4-6 |
| 1 |
| an-6 |
| 1 |
| an+1-6 |
=
| 1 |
| a1-6 |
| 1 |
| an+1-6 |
=-
| 1 |
| 52n-9 |
∵n≥1,∴2n≥2,∴52n≥25,
∴52n-1-9≥16,
∴0<
| 1 |
| 52n-9 |
| 1 |
| 16 |
∴-
| 1 |
| 16 |
| 1 |
| 52n-9 |
∴-
| 5 |
| 16 |
| 1 |
| 4 |
| 1 |
| 52n-9 |
| 1 |
| 4 |
∴-
| 5 |
| 16 |
| 1 |
| 4 |
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关题目
设数列:1,1+
,1+
+
,…,1+
+
+…+
,…的前n项和为Sn,则Sn等于( )
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
A、2n+
| ||
B、
| ||
C、2n-1+
| ||
D、2n-2+
|