题目内容

设a,b,c均为正数,且2a=log
1
2
a
(
1
2
)
b
=log
1
2
b
(
1
2
)
c
=log2c
,则(  )
A、a<b<c
B、c<b<a
C、c<a<b
D、b<a<c
分析:比较大小 可以借助图象进行比较,观察题设中的三个数a,b,c,可以借助函数图象的交点的位置进行比较.
解答:精英家教网解:分别作出四个函数y=(
1
2
)
x
,y=log
1
2
x

y=2x,y=log2x的图象,观察它们的交点情况.
由图象知:
∴a<b<c.
故选A.
点评:本题考点是对数值大小的比较,本题比较大小时用到了对数函数和指数函数的图象,比较大小的题在方法上应灵活选择,依据具体情况选择合适的方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网