题目内容
已知sinβ=msin(2α+β)(m≠1),求证:tan(α+β)=
tanα.
| 1+m |
| 1-m |
证明:∵sinβ=msin(2α+β),
∴sin[(α+β)-α]=msin[(α+β)+α].
∴sin(α+β)cosα-cos(α+β)sinα
=msin(α+β)cosα+mcos(α+β)sinα.
∴(1-m)sin(α+β)cosα
=(1+m)cos(α+β)sinα.
∴tan(α+β)=
tanα.
∴sin[(α+β)-α]=msin[(α+β)+α].
∴sin(α+β)cosα-cos(α+β)sinα
=msin(α+β)cosα+mcos(α+β)sinα.
∴(1-m)sin(α+β)cosα
=(1+m)cos(α+β)sinα.
∴tan(α+β)=
| 1+m |
| 1-m |
练习册系列答案
相关题目