ÌâÄ¿ÄÚÈÝ
14£®Õý·½ÌåABCD-A1B1C1D1 µÄÀⳤΪ1£¬EΪA1B1 µÄÖе㣬ÔòÏÂÁÐËĸöÃüÌ⣺¢ÙµãEµ½Æ½ÃæABC1D1 µÄ¾àÀëΪ$\frac{1}{2}$£»
¢ÚÖ±ÏßBCÓëÆ½ÃæABC1D1 Ëù³ÉµÄ½ÇµÈÓÚ45¡ã
¢Û¿Õ¼äËıßÐÎABCD1 ÔÚÕý·½ÌåÁù¸öÃæÄÚÐγÉÁù¸öÉäÓ°£¬ÆäÃæ»ý×îСֵÊÇ$\frac{1}{2}$
¢ÜAEÓëDCËù³É½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{5}}{5}$
ÆäÖÐÕæÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
| A£® | 1 | B£® | 2 | C£® | 3 | D£® | 4 |
·ÖÎö ÔÚ¢ÙÖУ¬Eµ½ÃæABC1D1µÄ¾àÀëµÈÓÚB1µ½ÃæABC1D1µÄ¾àÀëΪ$\frac{1}{2}$B1C£»ÔÚ¢ÚÖУ¬BCÓëÃæABC1D1Ëù³ÉµÄ½Ç¼´Îª¡ÏCBC1£»ÔÚ¢ÛÖУ¬ÔÚËĸöÃæÉϵÄͶӰ»òΪÕý·½ÐλòΪÈý½ÇÐΣ®×îСΪÈý½ÇÐΣ»ÔÚ¢ÜÖУ¬¡ÏEABÊÇAEÓëDCËù³É½Ç£®
½â´ð ½â£ºÔÚ¢ÙÖУ¬E¡ÊA1B1£¬A1B1¡ÎÃæABC1D1£¬
¡àEµ½ÃæABC1D1µÄ¾àÀëµÈÓÚB1µ½ÃæABC1D1µÄ¾àÀëΪ$\frac{1}{2}$B1C=$\frac{\sqrt{2}}{2}$£®¹Ê¢Ù´íÎó£»
ÔÚ¢ÚÖУ¬BCÓëÃæABC1D1Ëù³ÉµÄ½Ç¼´Îª¡ÏCBC1=45¡ã£¬¹Ê¢ÚÕýÈ·£»
ÔÚ¢ÛÖУ¬ÔÚËĸöÃæÉϵÄͶӰ»òΪÕý·½ÐλòΪÈý½ÇÐΣ®×îСΪÈý½ÇÐΣ¬Ãæ»ýΪ$\frac{1}{2}$£¬¹Ê¢ÛÕýÈ·£»
ÔÚ¢ÜÖУ¬¡ßDC¡ÎAB£¬¡à¡ÏEABÊÇAEÓëDCËù³É½Ç£¬
È¡ABÖеãF£¬Á¬½áEF£¬ÔòAF=$\frac{1}{2}$£¬AE=$\sqrt{1+\frac{1}{4}}=\frac{\sqrt{5}}{2}$£¬
¡àcos¡ÏEAB=$\frac{AF}{AE}$=$\frac{\frac{1}{2}}{\frac{\sqrt{5}}{2}}$=$\frac{\sqrt{5}}{5}$£®¹Ê¢ÜÕýÈ·£®
¹ÊÑ¡£ºC£®
µãÆÀ ±¾Ì⿼²éÃüÌâµÄÕæ¼ÙÅжϣ¬¿¼²éÕý·½Ìå½á¹¹ÌØÕ÷¡¢µãµ½Æ½ÃæµÄ¾àÀë¡¢ÏßÃæ½Ç¡¢Í¶Ó°Ãæ»ý¡¢ÒìÃæÖ±ÏßËù³É½ÇµÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²éÊýÐνáºÏ˼Ïë¡¢º¯ÊýÓë·½³Ì˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ï룬ÊÇÖеµÌ⣮
| A£® | $y=4sin£¨4x+\frac{¦Ð}{6}£©$ | B£® | $y=2sin£¨2x+\frac{¦Ð}{3}£©+2$ | C£® | $y=2sin£¨4x+\frac{¦Ð}{3}£©+2$ | D£® | $y=2sin£¨4x+\frac{¦Ð}{6}£©+2$ |