题目内容
【题目】如图,半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,该交线上的一点P满足∠BOP=60°,则A、P两点间的球面距离为( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
【答案】A
【解析】解:半径为R的半球O的底面圆O在平面α内,过点O作平面α的垂线交半球面于点A,过圆O的直径CD作平面α成45°角的平面与半球面相交,所得交线上到平面α的距离最大的点为B,所以CD⊥平面AOB,
因为∠BOP=60°,所以△OPB为正三角形,P到BO的距离为PE=
,E为BO的中点,AE=
=
,
AP=
=
,
AP2=OP2+OA2﹣2OPOAcos∠AOP,
,
cos∠AOP=
,∠AOP=arccos
,
A、P两点间的球面距离为
,
故选A.![]()
【题目】某印刷厂为了研究单册书籍的成本
(单位:元)与印刷册数
(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数 |
|
|
|
|
|
单册成本 |
|
|
|
|
|
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:
,方程乙:
.
(1)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到
);
印刷册数 |
|
|
|
|
| |
单册成本 |
|
|
|
|
| |
模型甲 | 估计值 |
|
|
| ||
残差 |
|
|
| |||
模型乙 | 估计值 |
|
|
| ||
残差 |
|
|
| |||
②分别计算模型甲与模型乙的残差平方和,并通过比较,判断哪个模型拟合效果更好.
(2)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为
千册,若印刷厂以每册
元的价格将书籍出售给订货商,求印刷厂二次印刷
千册获得的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本).
【题目】随着互联网的迅速发展,越来越多的消费者开始选择网络购物这种消费方式某营销部门统计了2019年某月锦州的十大特产的网络销售情况得到网民对不同特产的最满意度
和对应的销售额
(万元)数据,如下表:
特产种类 | 甲 | 乙 | 丙 | 丁 | 戊 | 已 | 庚 | 辛 | 壬 | 癸 |
最满意度 |
|
|
|
|
|
|
|
|
|
|
销售额 |
|
|
|
|
|
|
|
|
|
|
求销量额
关于最满意度
的相关系数
;
我们约定:销量额
关于最满意度
的相关系数
的绝对值在
以上(含
)是线性相关性较强;否则,线性相关性较弱.如果没有达到较强线性相关,则采取“末位淘汰”制(即销售额最少的特产退出销售),并求在剔除“末位淘汰”的特产后的销量额
关于最满意度
的线性回归方程(系数精确到
).
参考数据:![]()
,
,
,
.
附:对于一组数据
.其回归直线方程
的斜率和截距的最小二乘法估计公式分别为:
,
.线性相关系数![]()