题目内容

17.若集合A={(x,y)||x|≤1,|y|≤1},B={(x,y)|(x-a)2+(y-a)2<1},A∩B=∅,则实数a的取值范围是(-$∞,-1-\frac{\sqrt{2}}{2}$]∪[[1+$\frac{\sqrt{2}}{2}$,+∞).

分析 由题意画出图形,数形结合可得使A∩B=∅的实数a的取值范围.

解答 解:A={(x,y)||x|≤1,|y|≤1},B={(x,y)|(x-a)2+(y-a)2<1},
如图,|ON|=$\sqrt{2}+1$,则|OM|=1+$\frac{\sqrt{2}}{2}$,

要使A∩B=∅,则$a≤-1-\frac{\sqrt{2}}{2}$或a$≥1+\frac{\sqrt{2}}{2}$.
故答案为:(-$∞,-1-\frac{\sqrt{2}}{2}$]∪[1+$\frac{\sqrt{2}}{2}$,+∞).

点评 本题主要考查二元一次不等式(组)与平面区域、集合关系中的参数取值问题、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网