题目内容
11.已知⊙O:x2+y2=2,⊙M:(x+2)2+(y+2)2=2,点P的坐标为(1,1).(1)过点O作⊙M的切线,求该切线的方程;
(2)若点Q是⊙O上一点,过Q作⊙M的切线,切点分别为E,F,且∠EQF=$\frac{π}{3}$,求Q点的坐标;
(3)过点P作两条相异直线分别与⊙O相交于A,B,且直线PA与直线PB的倾斜角互补,试判断直线OP与AB是否平行?请说明理由.
分析 (1)设切线方程为:y=kx,则$\frac{|-2k+2|}{{\sqrt{{k^2}+1}}}=\sqrt{2}$$⇒k=2±\sqrt{3}$,即可求该切线的方程;
(2)题知,∠EQF=$\frac{π}{3}$,即QM=2ME,求出Q的轨迹方程,即可求Q点的坐标;
(3)求出A,B的坐标,利用斜率公式证明kAB=kOP⇒直线OP与AB平行.
解答 解:(1)设切线方程为:y=kx,则$\frac{|-2k+2|}{{\sqrt{{k^2}+1}}}=\sqrt{2}$$⇒k=2±\sqrt{3}$
⇒切线方程为$y=(2+\sqrt{3})x$或$y=(2-\sqrt{3})x$;
(2)由题知,∠EQF=$\frac{π}{3}$,即QM=2ME,设Q(x,y),则Q的轨迹为:$\left\{\begin{array}{l}{(x+2)^2}+{(y+2)^2}=8\\{x^2}+{y^2}=2\end{array}\right.⇒\left\{\begin{array}{l}x=\frac{{3-\sqrt{15}}}{4}\\ y=\frac{{-1+\sqrt{15}}}{4}\end{array}\right.或\left\{\begin{array}{l}x=\frac{{-1+\sqrt{15}}}{4}\\ y=\frac{{-1-\sqrt{15}}}{4}\end{array}\right.$
即$Q(\frac{{-1-\sqrt{15}}}{4},\frac{{-1+\sqrt{15}}}{4})或Q(\frac{{-1+\sqrt{15}}}{4},\frac{{-1-\sqrt{15}}}{4})$
(3)由题设lPA:y-1=k(x-1)则lPB:y-1=-k(x-1)
由$\left\{\begin{array}{l}y-1=k(x-1)\\{x^2}+{y^2}=2\end{array}\right.⇒(1+{k^2}){x^2}+2k(1-k)x+{(1-k)^2}-2=0$$⇒{x_A}=\frac{{{k^2}-2k-1}}{{1+{k^2}}}$;
同理${x_B}=\frac{{{k^2}+2k-1}}{{1+{k^2}}}$$⇒{k_{AB}}=\frac{{{y_B}-{y_A}}}{{{x_B}-{x_A}}}=\frac{{-k({x_A}+{x_B})+2k}}{{{x_B}-{x_A}}}=1$
又kOP=1⇒kAB=kOP⇒直线OP与AB平行.
点评 本题考查轨迹方程,考查直线与圆位置关系的运用,考查斜率的计算,属于中档题.
| A. | Sn=2n | B. | Sn=4n | C. | Sn=2n | D. | Sn=4n-4 |
| A. | 9 | B. | 3 | C. | 3或9 | D. | 以上都不对 |
| A. | (1,2] | B. | [4,+∞) | C. | (-∞,2] | D. | (0,3] |
| A. | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$ |