题目内容

已知等差数列{an}的前n项和为Sn,公差d≠0,且S3+S5=50,a1,a4,a13成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设{
bn
an
}是首项为1公比为2的等比数列,求数列{bn}前n项和Tn
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列的前n项和公式和通项公式以及等比数列的性质,求出首项和公差,由此能求出an=2n+1.
(Ⅱ)
bn
an
=2n-1bn=an2n-1=(2n+1)•2n-1
,由此利用错位相减法能求出数列{bn}前n项和Tn
解答: 解:(Ⅰ)∵等差数列{an}的前n项和为Sn,公差d≠0,
且S3+S5=50,a1,a4,a13成等比数列.
3a1+
3×2
2
d+5a1+
5×4
2
d=50
(a1+3d)2=a1(a1+12d)
,…(2分)
解得
a1=3
d=2
…(4分)
∴an=a1+(n-1)d=3+2(n-1)=2n+1,
∴an=2n+1…(6分)
(Ⅱ)∵{
bn
an
}是首项为1公比为2 的等比数列,
bn
an
=2n-1bn=an2n-1=(2n+1)•2n-1
…(7分)
Tn=3×20+5×21+7×22+…+(2n+1)•2n-12Tn=3×21+5×22+7×23+…+(2n-1)•2n-1+(2n+1)•2n②…(9分)
两式相减得:
Tn=-3-2×
2(1-2n-1)
1-2
+(2n+1)•2n

=1+(2n-1)•2n…(13分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网