题目内容
(理科) 已知数列{an}满足an+1=|an-1|(n∈N+).
(1)若a1=
,计算a2,a3,a4的值,并写出数列{an}(n∈N+,n≥2)的通项公式;
(2)是否存在a1,n0(a1∈R,n0∈N+),使得当n≥n0(n∈N+)时,an恒为常数,若存在,求出a1,n0,否则说明理由;
(3)若a1=a∈(k,k+1),(k∈N+),求{an}的前3k项的和S3k(用k,a表示).
(1)若a1=
| 5 | 4 |
(2)是否存在a1,n0(a1∈R,n0∈N+),使得当n≥n0(n∈N+)时,an恒为常数,若存在,求出a1,n0,否则说明理由;
(3)若a1=a∈(k,k+1),(k∈N+),求{an}的前3k项的和S3k(用k,a表示).
分析:(1)由数列an满足an+1=|an-1|(n∈N*),a1=
,我们分别求出a2,a3,a4的值,分析变化的周期性规则,即可得到{an}的表达式;
(2)分an≥1时,0<a1<1时,a1=b≥1时和a1=c<0时,几种情况,分别进行讨论,最后将讨论结论综合,即可得到结论;
(3)当a1=a∈(k,k+1)(k∈N*)时,易知a2=a-1,a3=a-2,…,ak=a-(k-1),利用拆项法,即可得到答案.
| 5 |
| 4 |
(2)分an≥1时,0<a1<1时,a1=b≥1时和a1=c<0时,几种情况,分别进行讨论,最后将讨论结论综合,即可得到结论;
(3)当a1=a∈(k,k+1)(k∈N*)时,易知a2=a-1,a3=a-2,…,ak=a-(k-1),利用拆项法,即可得到答案.
解答:解:(1)∵a1=
,∴a2=
,a3=
,a4=
∴a1=
,n≥2时,an=
,其中k∈N*
(2)因为存在an+1=|an-1|=
,
所以当an≥1时,an+1≠an
①若0<a1<1,则a2=1-a1,a3=1-a2=a1,此时只需:a2=1-a1=a1,∴a1=
,故存在a1=
,an=
,(n∈N*)
②若a1=b≥1,不妨设b∈[m,m+1),m∈N*,易知am+1=b-m∈[0,1),
∴am+2=1-am+1=1-(b-m)=am+1=b-m
∴b=m+
,∴a1=m+
,n≥m+1时,an=
,(m∈N*)
③若a1=c<0,不妨设c∈(-l,-l+1),l∈N*,易知a2=-c+1∈(l,l+1],
∴a3=a2-1=-c,al+2=-c-(l-1)∈(0,1]
∴c=-l+
,∴a1=-l+
(l∈N*),n≥l+2,则an=
故存在三组a1和n0:a1=
时,n0=1;a1=m+
时,n0=m+1;a1=-m+
时,n0=m+2其中m∈N*
(3)当a1=a∈(k,k+1)(k∈N*)时,
易知a2=a-1,a3=a-2,ak=a-(k-1),
ak+1=a-k∈(0,1),ak+2=1-ak+1=k+1-a,
ak+3=1-ak+2=a-k,ak+4=1-ak+3=k+1-a,
a3k-1=a-k,a3k=k+1-a
∴S3k=a1+a2+…+ak+ak+1+ak+2+ak+3+ak+4+…+a3k-1+a3k=a+(a-1)+(a-2)+…+a-(k-1)+k=-
+k(a+
)
| 5 |
| 4 |
| 1 |
| 4 |
| 3 |
| 4 |
| 1 |
| 4 |
∴a1=
| 5 |
| 4 |
|
(2)因为存在an+1=|an-1|=
|
所以当an≥1时,an+1≠an
①若0<a1<1,则a2=1-a1,a3=1-a2=a1,此时只需:a2=1-a1=a1,∴a1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
②若a1=b≥1,不妨设b∈[m,m+1),m∈N*,易知am+1=b-m∈[0,1),
∴am+2=1-am+1=1-(b-m)=am+1=b-m
∴b=m+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
③若a1=c<0,不妨设c∈(-l,-l+1),l∈N*,易知a2=-c+1∈(l,l+1],
∴a3=a2-1=-c,al+2=-c-(l-1)∈(0,1]
∴c=-l+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
故存在三组a1和n0:a1=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
(3)当a1=a∈(k,k+1)(k∈N*)时,
易知a2=a-1,a3=a-2,ak=a-(k-1),
ak+1=a-k∈(0,1),ak+2=1-ak+1=k+1-a,
ak+3=1-ak+2=a-k,ak+4=1-ak+3=k+1-a,
a3k-1=a-k,a3k=k+1-a
∴S3k=a1+a2+…+ak+ak+1+ak+2+ak+3+ak+4+…+a3k-1+a3k=a+(a-1)+(a-2)+…+a-(k-1)+k=-
| k2 |
| 2 |
| 3 |
| 2 |
点评:本题考查数列递推公式及数列求和,其中正确理解数列的递推公式,并能准确的对a进行分类讨论,是解答本题的关键.
练习册系列答案
相关题目