题目内容
若η~B(6,
),则P(η=4)=( )
| 1 |
| 3 |
分析:根据η~B(6,
)知P(η=4)即为独立做6次试验,发生了4次的概率,即 C64p4(1-p)2,即可求解.
| 1 |
| 3 |
解答:解:∵根据η~B(6,
)知,
P(η=4)即为独立做6次试验,发生了4次的概率,
即 C64p4(1-p)2=C6 4
4(1-
)2=
故选B.
| 1 |
| 3 |
P(η=4)即为独立做6次试验,发生了4次的概率,
即 C64p4(1-p)2=C6 4
| 1 |
| 3 |
| 1 |
| 3 |
| 20 |
| 243 |
故选B.
点评:本题是一个二项分布的问题,在每次试验中事件发生的概率是相同的,各次试验中的事件是相互独立的,每次试验只要两种结果,要么发生要么不发生,随机变量是这n次独立重复试验中实件发生的次数.
练习册系列答案
相关题目
已知函数f(x)=
,若数列{an}满足an=f(n)(n∈N*),且{an}是递减数列,则实数a的取值范围是( )
|
A、(
| ||||
B、(
| ||||
C、[
| ||||
D、(
|