题目内容
若a,b∈R+且a+b=1,则(1+
)(1+
)的最小值为
| 1 |
| a |
| 1 |
| b |
9
9
.分析:根据题意,利用a+b=1,代换则(1+
)(1+
)中分子上的“1”,变形可得则(1+
)(1+
)=5+2(
+
),由基本不等式可得
+
≥2,将其代入(1+
)(1+
)=5+2(
+
)中,可得(1+
)(1+
)的最小值,即可得答案.
| 1 |
| a |
| 1 |
| b |
| 1 |
| a |
| 1 |
| b |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
| 1 |
| a |
| 1 |
| b |
| b |
| a |
| a |
| b |
| 1 |
| a |
| 1 |
| b |
解答:解:由题意a+b=1,
则(1+
)(1+
)=(1+
)(1+
)=(2+
)(2+
)=5+2(
+
),
又由a,b∈R+,则
>0、
>0,
则
+
≥2
=2,
(1+
)(1+
)=5+2(
+
)≥9,其最小值为9,
故答案为9.
则(1+
| 1 |
| a |
| 1 |
| b |
| a+b |
| a |
| a+b |
| b |
| b |
| a |
| a |
| b |
| b |
| a |
| a |
| b |
又由a,b∈R+,则
| b |
| a |
| a |
| b |
则
| b |
| a |
| a |
| b |
|
(1+
| 1 |
| a |
| 1 |
| b |
| b |
| a |
| a |
| b |
故答案为9.
点评:本题考查基本不等式的应用,关键是根据题意,配凑基本不等式成立的条件,一正二定三相等.
练习册系列答案
相关题目
下列命题中正确的是( )
| A、若a,b,c∈R,且a>b,则ac2>bc2 | ||||
B、若a,b∈R且a•b≠0则
| ||||
| C、若a,b∈R且a>|b|,则an>bn(n∈N+) | ||||
D、若a>b,c>d,则
|