题目内容
已知tan(α+β)=log324,tan(α+
)=
,则tan(β-
)=( )
| π |
| 4 |
| log240-log25 |
| 11×log29×log32 |
| π |
| 4 |
分析:先根据对数的运算性质求出tan(α+β)=
以及tan(α+
)=
,再结合两角差的正切公式即可得到答案.
| 2 |
| 5 |
| π |
| 4 |
| 3 |
| 22 |
解答:解:∵tan(α+β)=log324=
;
tan(α+
)=
=
=
=
.
∴tan(β-
)
=tan[(α+β)-(α+
)]
=
=
=
.
故选B.
| 2 |
| 5 |
tan(α+
| π |
| 4 |
| log240-log25 |
| 11×log29×log32 |
| log 2 8 |
| 11×log 2 32×log 3 2 |
| 3 |
| 11×2 |
| 3 |
| 22 |
∴tan(β-
| π |
| 4 |
=tan[(α+β)-(α+
| π |
| 4 |
=
tan(α+β)-tan(α+
| ||
1+tan(α+β)tan(π+
|
=
| ||||
1+
|
| 1 |
| 4 |
故选B.
点评:本题主要考查两角和与差的正切函数以及对数的运算性质.解决本题的关键在于根据对数的运算性质求出tan(α+β)=
以及tan(α+
)=
.考查计算能力.
| 2 |
| 5 |
| π |
| 4 |
| 3 |
| 22 |
练习册系列答案
相关题目
已知tan(θ+
)=-3,则sin2θ+sinθcosθ-2cos2θ=( )
| π |
| 4 |
A、-
| ||
B、
| ||
C、-
| ||
D、
|