题目内容

8.设抛物线x2=8y上一点P到x轴的距离是4,则点P到抛物线焦点的距离是(  )
A.12B.8C.6D.4

分析 由题意可得点P的纵坐标为4,由抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线y=-2的距离,由此求得结果.

解答 解:由于抛抛物线x2=8y上的一点P到x轴的距离是4,
故点P的纵坐标为4.
再由抛物线x2=8y的准线为y=-2,
结合抛物线的定义可得点P到该抛物线焦点的距离等于点P到准线的距离,
故点P到该抛物线焦点的距离是4-(-2)=6,
故选:C.

点评 本题主要考查抛物线的定义、标准方程,以及简单性质的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网