题目内容

直棱柱ABCD-A1B1C1D1中,底面ABCD是直角梯形,∠BAD=∠ADC=90°,AB=2AD=2CD=2.
(1)求证:AC⊥平面BB1C1C;
(2)若P为A1B1的中点,求证:DP∥平面ACB1
分析:(1)直棱柱ABCD-A1B1C1D1中,由BB1⊥平面ABCD,知BB1⊥AC,有∠BAD=∠ADC=90°,知AB=2AD=2CD=2,由此能够证明AC⊥平面BB1C1C.
(2)由P为A1B1的中点,知PB1∥AB,且PB1=
1
2
AB
,由此能够证明DP∥面ACB1
解答:证明:(1)直棱柱ABCD-A1B1C1D1中,
BB1⊥平面ABCD,
∴BB1⊥AC,
∵∠BAD=∠ADC=90°,
AB=2AD=2CD=2,
∴AC=
2
,∴BC=
2
,∴BC⊥AC,
∴AC⊥平面BB1C1C.
(2)由P为A1B1的中点,知PB1∥AB,
PB1=
1
2
AB

∵DC∥AB,DC=
1
2
AB

∴DC∥PB1,且DC=PB1
∴DCB1P为平行四边形,从而CB1∥DP,
∵CB1?面ACB1,DP?面ACB1
∴DP∥面ACB1
点评:本题考查直线与平面垂直的证明和直线与平面平行的证明,解题时要认真审题,仔细解答,注意合理地化空间问题为平面问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网