题目内容

已知
OA
=(2,5)
OB
=(3,1)
OC
=(6,3)
,在
OC
上是否存在点M,使
MA
MB
,若存在,求出点M的坐标;若不存在,请说明理由.
分析:利用三点共线即向量共线,利用向量共线的充要条件表示出M的坐标;利用向量的坐标公式求出向量的坐标;利用向量垂直的充要条件列出方程,求出M的坐标.
解答:解:设存在点M,且
OM
=λ 
OC
 =(6λ,3λ)
(0<λ≤1),
MA
=(2-6λ,5-3λ)

MB
=(3-6λ,1-3λ)

MA
MB

∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,
即45λ2-48λ+11=0,
解得λ=
1
3
或λ=
11
15

OM
=(2,1)或
OM
=(
22
5
11
5
).
∴存在M(2,1)或M(
22
5
11
5
)满足题意.
点评:本题考查向量共线的充要条件、考查向量垂直的充要条件:数量积为0、考查向量的数量积公式.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网