ÌâÄ¿ÄÚÈÝ
1£®£¨¢ñ£©ÇëĬдÁ½½ÇºÍÓë²îµÄÓàÏÒ¹«Ê½£¨C£¨¦Á+¦Â£©£¬C£¨¦Á-¦Â£©£©£¬²¢Óù«Ê½C£¨¦Á-¦Â£©Ö¤Ã÷¹«Ê½C£¨¦Á+¦Â£©C£¨¦Á+¦Â£©£ºcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£»C£¨¦Á-¦Â£©£ºcos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â£®£¨¢ò£©ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬Á½µãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©¼äµÄ¾àÀ빫ʽÊÇ£º$|{AB}|=\sqrt{{{£¨{{x_2}-{x_1}}£©}^2}+{{£¨{{y_2}-{y_1}}£©}^2}}$£¬Èçͼ£¬µãA£¨1£¬0£©£¬P1£¨cos¦Á£¬sin¦Á£©£¬P2£¨cos£¨-¦Â£©£¬sin£¨-¦Â£©£©£¬P£¨cos£¨¦Á+¦Â£©£¬sin£¨¦Á+¦Â£©£©£¬Çë´ÓÕâ¸öͼ³ö·¢£¬ÍƵ¼³öÁ½½ÇºÍµÄÓàÏÒ¹«Ê½£¨C£¨¦Á+¦Â£©£©£¨×¢£º²»ÄÜÓÃÏòÁ¿·½·¨£©£®
·ÖÎö £¨¢ñ£©ÓɦÁ+¦Â=¦Á-£¨-¦Â£©£¬ÀûÓÃÓÕµ¼¹«Ê½¼´¿ÉÖ¤Ã÷£»
£¨¢ò£©ÓÉAP=P1P2¼°Á½µã¼äµÄ¾àÀ빫ʽ¼´¿ÉµÃ½â£®
½â´ð £¨±¾ÌâÂú·ÖΪ12·Ö£©
½â£º£¨¢ñ£©Á½½ÇºÍµÄÓàÏÒ¹«Ê½C¦Á+¦ÂΪ£ºcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£®Á½½Ç²îµÄÓàÏÒ¹«Ê½C¦Á-¦ÂΪ£ºcos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â£®
Ö¤Ã÷£º¡ßcos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â£¬
¡àcos£¨¦Á+¦Â£©=cos[¦Á-£¨-¦Â£©]=cos¦Ácos£¨-¦Â£©+sin¦Ásin£¨-¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£¬µÃÖ¤£®
¹Ê´ð°¸Îª£ºcos¦Ácos¦Â-sin¦Ásin¦Â£¬cos¦Ácos¦Â+sin¦Ásin¦Â£®¡£¨6·Ö£©
£¨¢ò£©ÓÉAP=P1P2¼°Á½µã¼äµÄ¾àÀ빫ʽ£¬µÃ£º[cos£¨¦Á+¦Â£©-1]2+sin2£¨¦Á+¦Â£©=[cos£¨-¦Â£©-cos¦Á]2+[sin£¨-¦Â£©-sin¦Á]2¡£¨6·Ö£©
Õ¹¿ª²¢ÕûÀíµÃ£º2-2cos£¨¦Á+¦Â£©=2-2£¨cos¦Ácos¦Â-sin¦Ásin¦Â£©
¡àcos£¨¦Á+¦Â£©=cos¦Ácos¦Â-sin¦Ásin¦Â£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²éÁ½½ÇºÍÓë²îµÄÓàÏÒ¹«Ê½£¬¿¼²éÁ½µã¼äµÄ¾àÀ빫ʽ£¬ÀûÓÃÈÎÒâ½ÇµÄÈý½Çº¯ÊýµÄ¶¨ÒåÖ¤Ã÷Á½½ÇºÍµÄÓàÏÒ¹«Ê½C¦Á+¦ÂÊÇÄѵ㣬ÊôÓÚÖеµÌ⣮
| A£® | {-2£¬-1£¬0£¬1} | B£® | {-3£¬-2£¬-1£¬0} | C£® | {-2£¬-1£¬0} | D£® | {-3£¬-2£¬-1} |
| A£® | $\frac{1}{4}$ | B£® | $\frac{3}{4}$ | C£® | $\frac{1}{3}$ | D£® | $\frac{3}{5}$ |