题目内容
11.在△ABC中,∠A,∠B,∠C所对边的长分别为a,b,c.已知a+$\sqrt{2}$c=2b,sinB=$\sqrt{2}$sinC,则$sin\frac{C}{2}$=$\frac{\sqrt{2}}{4}$.分析 由题意和正弦定理可得a=b=$\sqrt{2}$c,代入余弦定理可得cosC,由二倍角公式和三角形内角的范围可得.
解答 解:∵在△ABC中a+$\sqrt{2}$c=2b,sinB=$\sqrt{2}$sinC,
∴由正弦定理可得a+$\sqrt{2}$c=2b,b=$\sqrt{2}$c,
联立可解得a=b=$\sqrt{2}$c,
∴由余弦定理可得cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$
=$\frac{2{c}^{2}+2{c}^{2}-{c}^{2}}{2×\sqrt{2}c×\sqrt{2}c}$=$\frac{3}{4}$,
再由二倍角公式可得cosC=1-2sin2$\frac{C}{2}$=$\frac{3}{4}$,
解得$sin\frac{C}{2}$=$\frac{\sqrt{2}}{4}$或$sin\frac{C}{2}$=-$\frac{\sqrt{2}}{4}$,
再由三角形内角的范围可得$\frac{C}{2}$∈(0,$\frac{π}{2}$)
故$sin\frac{C}{2}$=$\frac{\sqrt{2}}{4}$
故答案为:$\frac{\sqrt{2}}{4}$
点评 本题考查解三角形,涉及正余弦定理和二倍角公式,属中档题.
练习册系列答案
相关题目
1.若a,b∈R,命题p:直线y=ax+b与圆x2+y2=1相交;命题$q:a>\sqrt{{b^2}-1}$,则p是q的 ( )
| A. | 必要不充分条件 | B. | 充分不必要条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
19.已知$cos(\frac{π}{4}-α)=\frac{4}{5}$,则$sin(\frac{π}{4}+α)$=( )
| A. | $\frac{4}{5}$ | B. | $\frac{3}{5}$ | C. | $-\frac{4}{5}$ | D. | $-\frac{3}{5}$ |
6.如果实数x、y满足关系$\left\{\begin{array}{l}{x+y-4≤0}\\{x-y≤0}\\{4x-y+4≥0}\end{array}\right.$,则(x-2)2+y2的最小值是( )
| A. | 2 | B. | 4 | C. | $\sqrt{2}$ | D. | $2\sqrt{2}$ |
16.设函数f(x)为奇函数,且在(-∞,0)上是减函数,若f(-3)=0,则xf(x)<0的解集为( )
| A. | (-3,0)∪(3,+∞) | B. | (-∞,-3)∪(0,3) | C. | (-∞,-3)∪(3,+∞) | D. | (-3,0)∪(0,3) |
3.设变量x,y满足约束条件$\left\{\begin{array}{l}x+y-2≤0\\ x-y+2≥0\\ y≥0\end{array}\right.$,则目标函数z=x+2y的最小值为-2.
1.奇函数f(x)的定义域为R.若f(x+2)为偶函数,且f(1)=1,则f(5)+f(8)=( )
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |