题目内容
【题目】某气象站观测点记录的连续4天里,
指数
与当天的空气水平可见度
(单位
)的情况如下表1:
![]()
哈尔滨市某月
指数频数分布如下表2:
![]()
(1)设
,根据表1的数据,求出
关于
的回归方程;
(参考公式:
,其中
,
)
(2)小张开了一家洗车店,经统计,当
不高于200时,洗车店平均每天亏损约2000元;当
在
时,洗车店平均每天收入约4000元;当
大于400时,洗车店平均每天收入约7000元;根据表2估计校长的洗车店该月份平均每天的收入.
【答案】(1)
;(2)
.
【解析】试题分析:
(1)利用回归方程的计算公式可得回归方程为
.
(2)利用(1)的结论结合题意可预测校长的洗车店该月份平均每天的收入为5500.
试题解析:
(1)
,
,
,
,
,
,
关于
的回归方程是
.
(2)表2知:30天中有3天每天亏损约2000元,有6天每天收入约4000元,有21天每天收入约7000元,故该月份平均每天的收入约为
(元);答:洗衣店该月份平均每天的收入约为5500元.
【题目】已知椭圆
的中心在坐标原点
,焦点在
轴上,椭圆
的短轴端点和焦点所组成的四边形为正方形,且椭圆
上任意一点到两个焦点的距离之和为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)若直线
与椭圆
相交于
两点,求
面积的最大值.
【题目】某同学用“五点法”画函数f(x)=Asin(ωx+φ)(ω>0,|φ|<
)在某一个周期内的图象时,列表并填入的部分数据如表:
x |
|
| |||
ωx+φ | 0 |
| π |
| 2π |
Asin(ωx+φ) | 0 | 2 | 0 | ﹣2 |
(1)请将上表数据补全,并直接写出函数f(x)的解析式;
(2)当x∈[0,
]时,求函数f(x)的值域.
【题目】某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第
年与年销量
(单位:万件)之间的关系如表:
| 1 | 2 | 3 | 4 |
| 12 | 28 | 42 | 56 |
![]()
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合
与
的回归模型,并用相关系数甲乙说明;
(Ⅲ)建立
关于
的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:
,
,
.
参考公式:相关系数
,
回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.