题目内容


 等腰Rt△ACB,AB=2,.以直线AC为轴旋转一周得到一个圆锥,D为圆锥底面一点,BD⊥CD,CH⊥AD于点H,M为AB中点,则当三棱锥C﹣HAM的体积最大时,CD的长为(  )

 

A.

B.

C.

D.


C.

【解析】根据题意,得

∵AC⊥平面BCD,BD⊂平面BCD,∴AC⊥BD,

∵CD⊥BD,AC∩CD=C,∴BD⊥平面ACD,可得BD⊥CH,

∵CH⊥AD,AD∩BD=D,∴CH⊥平面ABD,可得CH⊥AB,

∵CM⊥AB,CH∩CM=C,∴AB⊥平面CMH,

因此,三棱锥C﹣HAM的体积V=SCMH×AM=SCMH由此可得,当SCMH达到最大值时,三棱锥C﹣HAM的体积最大

设∠BCD=θ,则Rt△BCD中,BC=AB=

可得CD=,BD=

Rt△ACD中,根据等积转换得CH==

Rt△ABD∽Rt△AHM,得,所以HM==

因此,SCMH=CH•HM==

∵4+2tan2θ≥4tanθ,

∴SCMH==

当且仅当tanθ=时,SCMH达到最大值,三棱锥C﹣HAM的体积同时达到最大值.

∵tanθ=>0,可得sinθ=cosθ>0

∴结合sin2θ+cos2θ=1,解出cos2θ=,可得cosθ=(舍负)

由此可得CD==

即当三棱锥C﹣HAM的体积最大时,CD的长为

故选:C


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网